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Interaction of self-organized quasiparticles in a two-dimensional reaction-diffusion system:
The formation of molecules

C. P. Schenk, P. Schu¨tz, M. Bode, and H.-G. Purwins
Institut für Angewandte Physik, Corrensstrasse 2/4, D-48149 Mu¨nster, Germany

~Received 7 January 1998; revised manuscript received 27 February 1998!

In two-dimensional reaction-diffusion systems localized, solitary structures, that we call self-organized
quasiparticles or spots, can be found as stable and stationary solutions. Combinations of two or more spots can
lead to rather complex patterns, that can be understood by treating them as particles. These particles can
interact with the boundaries of the system as well as with each other in different ways, that depend essentially
on the parameters of the system. The interaction can be described by an approximation based on the exponen-
tial decay of the spots apart from their centers. The calculations reduce the dynamics of the system to some
equations for the velocities of the spots. In particular, there is a parameter range where the interaction of two
spots oscillates with their distance, which gives rise to infinitely many bounded states, resembling molecules.
Investigating more than two spots molecules of numerous shapes have been obtained.
@S1063-651X~98!08806-0#

PACS number~s!: 82.20.Mj, 82.20.Wt
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I. INTRODUCTION

The understanding of complex dynamical systems is
of the most important subjects in modern physics. Due
their nonlinearity a great variety of biological~e.g., @1,2#!,
chemical ~e.g., @3,4#!, and physical~e.g., @5–7#! systems
show very interesting phenomena of pattern formation
typical example is the spontanous self-organization from
steady homogenous state to spatial or spatiotemporal
terns. Turing @8# proposed a two-component activato
inhibitor model that is able to describe the transition from
homogenous state to striped or hexagonal patterns on
and two-dimensional domains. Mathematically these syst
can be written as reaction-diffusion equations.

Small-amplitude structures occurring in these systems
well described by means of Ginzburg-Landau–type am
tude equations and its extensions~e.g.,@9–12#!. The descrip-
tion of large amplitude patterns can be performed by
analysis of solutions that are localized at least with respec
one spatial dimension such as stripes, spots@13#, spheres,
cylinders, etc. To obtain analytical results concerning ex
tence and stability of these patterns the authors mostly c
sider certain asymptotical conditions of the parameters
volved. Usually, characteristic time and/or length sca
corresponding to the respective components have to be
separated to this end@14–18#.

There are certain structures, though, that are system
cally excluded by these approaches. One such class, w
will be the topic of the present article, contains ensemble
spots, i.e., patterns localized in each direction that fo
bounded clusters resembling chemical molecules. Such
jects have been observed experimentally~e.g.,@19–22#! and
numerically@20#. These patterns are ignored by the asym
totical approach referred to above as the second one. Th
due to the interaction of neighboring spots, which, in t
separated scales limit, is either repulsive, for large distan
or attractive if they are close to each other. Hence, station
multispot patterns are unstable, and either merge or d
571063-651X/98/57~6!/6480~7!/$15.00
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apart if they are not confined by the boundaries or by suita
inhomogeneities of the control parameters. There is an in
mediate parameter region, though, which provides a differ
type of spot-spot interaction oscillating with their mutual d
tance that gives rise to infinitely many bounded states an
more than two spots are involved, to many complex sta
molecules. Some one-dimensional examples can be foun
@13,23#. The notion of ‘‘molecules’’ reflects the analytica
approach to investigate these structures.

In Sec. II the model equations are described and the
istence and stability of localized stationary solutions is n
merically proven. In Sec. III these are considered as fun
mental particles similar to an atom in chemistry. Analytic
investigations are restricted to the interaction of such p
ticles. This leads to a dynamical system with one phase sp
dimension per particle and spatial dimension, i.e., a two-s
ensemble is described in a four-dimensional phase spac
the framework of this article. The dynamical equations a
based on certain coefficients that have to be determined
merically from the shape of the spots. This is sufficient
predict the shape and stability of many of the molecu
observed in numerical simulations. Section IV summariz
some of these numerical results.

II. MODEL EQUATIONS AND BASIC SOLUTIONS

The investigated system is a two-component reacti
diffusion system on an infinite two-dimensional doma
which can be written as

v̇5DvDv1 f ~v !2w1k, ~1a!

dẇ5DwDw1v2w. ~1b!

In these equationsDv and Dw are the diffusion coeffi-
cients of the activatorv5v(r )5v(x,y) and the inhibitorw
5w(r )5w(x,y) and D5]xx1]yy denotes the Laplacian in
two dimensions. In the following the vector (v,w) will be
abbreviated asu. The functionf (v) is a nonlinear, cubiclike
6480 © 1998 The American Physical Society
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57 6481INTERACTION OF SELF-ORGANIZED . . .
function ofv. The local dynamics is governed by the para
eterk and the functionf (v). For numerical simulations we
choose f (v)5lv2v3 and Neumann boundary condition
Parameters are always chosen such that the homoge
steady stateuf5(v f ,wf) is stable.

In this paper we want to investigate the behavior of s
tionary localized structures with rotational symmetry r
ferred to as ‘‘spots’’ or ‘‘quasiparticles.’’ Using polar coor
dinates (r,w) the solution describing a unique spot can
written as

ū~r!5„v̄~r!,w̄~r!… with lim
r→`

ū~r!5uf . ~2!

An example for the componentsv̄(r) and w̄(r) of such an
object is given in Fig. 1. Although it is not possible to pred
the existence, shape and stability of these structures ana
cally, the numerical effort to obtain both the shape, and
stability information for a given set of parameters is rath
low. Inserting ~2! into Eqs. ~1! yields the set of ordinary
differential equations

05DvS ]rrv̄1
1

r
]rv̄ D1 f ~ v̄ !2w̄1k, ~3a!

05DwS ]rrw̄1
1

r
]rw̄D1 v̄2w̄. ~3b!

Since we demand a localized and smooth solution,
boundary conditions are]rū(0)50 and ū(`)5uf . Obvi-
ously ū(r)5uf is a trivial solution. For some parameters it
possible to obtain nontrivial solutions similar to those d
picted in Fig. 1. Typically we get two solutions: In this ca
the one with lower amplitude is unstable and plays the r
of a separatrix between the stationary stateuf and the second
solution, which can be either stable or unstable. The stab
of these structures can be investigated considering pertu
tions of the type

dun~r,w,t !5sin~nw1fn!un~r,t !, n50,1,2 . . . . ~4!

FIG. 1. Distribution of the componentsv̄(r) and w̄(r) of a
localized, stable particlelike solution given the paramet
Dv50.0028,Dw50.025, k520.1, l50.7, andd51. The inter-

section ofv̄(r) with 0 is indicated by the markers.
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This decomposition of possible perturbations reduces
two-dimensional stability problem to a number of on
dimensional problems of the form

v̇n5FDvS ]rr1
1

r
]r2

n2

r2D 1 f 8~ v̄ !Gvn2wn , ~5a!

ẇn5
1

dFDwS ]rr1
1

r
]r2

n2

r2D 21Gwn1
1

d
vn . ~5b!

Imposing continuity atr50 leads to the boundary conditio
un(0)50 for n.0. Forn50 we require smoothness and g
]run(0)50. To ensure the stability of the stationary sol
tions ū(r) the real parts of the eigenvalues of the operator
the right-hand side have to be negative for alln. Typically
solving the eigenvalue problem forn50,1, . . . ,10 issuffi-
cient to ensure the stability of the structure. In Fig. 2 w
present the results of a stability analysis for the paramet

Dv50.0025, Dw50.025, l52, d51, k520.32.
~6!

Since we are able to prove the stability of the homogen
state analytically, it is useful to compare those results wit
numerical stability analysis of the homogenous state. Fig
2 shows that only a few discrete eigenmodes are influen
by the shape of the spot and that forn.5 the results are
nearly identical with the eigenvalues of the homogeno
state. This suggests that modes with even highern will not
be unstable. Forn51 the stability analysis of the localize
solution shows a zero eigenvalue that corresponds to
Goldstone modes of the spots]xū and]yū.

Apart from their maximum the shape of the spots is go
erned by the linearization of Eq.~1!. For increasing distance
from the center it decays nearly exponentially towards
homogenous state. If the relation

s FIG. 2. Results of the numerical stability analysis for a statio
ary quasiparticle solution for the parametersDv50.0025,
Dw50.025,k520.32, l52, andd51. We show the six larges
real parts of the eigenvaluesln, n51, . . . ,6 of thelinear stability
analysis of the spot compared to those of the homogenous state
zero eigenvalue forn51 corresponds to the Goldstone mode of t
quasiparticle.
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2
Dv

Dw
22ADv

Dw
, f 8~v f !,2

Dv

Dw
12ADv

Dw
~7!

is satisfied, the linearization yields solutions that decay
ponentially, but oscillate around the stationary state. T
type of decay can be seen in Fig. 1.

III. DERIVATION OF AN INTERACTION LAW

In the following we will derive an interaction law for th
stable spots described above. The perturbation procedur
plied is a two-dimensional extension of the technique u
lized by Elphick, Meron, and Spiegel to treat the interact
of traveling pulses in one-dimensional systems@25#. We also
found explicit representations of the relevant projectors
terms of the stationary solution such that we are able to
rive the interaction in a quantitative manner. We start
shifting the offset of the components in order to mapuf to
(0,0) by means of the transformationunew5uold2uf . We
will use u, v andw in this new meaning omitting the index
though. The system in Eq.~1! can be rewritten by splitting
the right-hand side into linear and nonlinear terms. T
yields the equation

u̇5Lu1N~u!, ~8!

whereL is the linear operator

L5S DvD1 f 8~v f ! 21

1

d

1

d
~DwD21!D ~9!

andN denotes the nonlinear operator

N~u!5S f ~v1v f !2 f 8~v f !v2 f ~v f !

0 D . ~10!

Now consider a superposition of an arbitrary number
spots ūi5ū(r 2r i) at different positionsr i . If all the dis-
tances between these quasiparticles are large enough,
superposition is a good approximation to the exact solu
of Eq. ~8! due to their localized shape. The error of th
approximation scales with the distance between the spot
all distances are increased simultaneously, the size of
error scales, according to the decay of the linearization of
~1!, like «;exp(2mdmin)/Admin, wheredmin represents the
smallest distance to be found between two members o
given ensemble. The coefficientm corresponds to the abso
lute value of the real part of the eigenvaluel, which can be
obtained from the linearization of Eq.~1! as

l25
1

2Dv
S s6As214

Dv

Dw
@ f 8~v f !21# D , ~11!

with s5(Dv /Dw)2 f 8(v f).
Since the system is homogenous there is no preferred

sition for a single stationary spot. Instead, there are
translational modes~Goldstone modes! and small perturba-
tions can lead to a slow propagation. The overlap of t
different spots can be interpreted as such a perturbation
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each of them. Therefore, a reasonable approach for the
scription of the dynamics in this system is

u~r ,t!5(
i 51

N

ū„r 2r i~t!…1«s~r ,t!5(
i

ūi1s. ~12!

In this equation the dynamics of the spots is assumed
appear on a slow time scalet5«t, because the interaction o
different quasiparticles is ofO(«). s(r ,t) denotes the re-
maining error of this approach. Relaxation of the remain
degrees of freedom associated with the shape of the s
which happens on a faster time scale is considered to
finsished and is thus ignored. To get a unique decomposi
~12! we have to add 2N further conditions. We choose

^ūi ,yus&50 and ^ūi ,xus&50 for i 51 . . .N, ~13!

where^ f & denotes integration over the domain and an ad
tional index,x represents the partial derivative]/]x. ūi ,y and
ūi ,x are the Goldstone modes of a single spot and repre
the two translational degrees of freedom: Adding the Go
stone mode to such a spot corresponds to a small sp
shift. Thus, we demand thats(r ,t) does not contribute to
this shift.

The approach~12! satisfies Eq.~8! to order O(1). The
terms ofO(«) yield the following equation:

F2L2¹NS (
i

ūi D Gs5
1

«FNS (
i

ūi D 2(
i

N~ ūi !G
1(

i
¹ūi r i ,t . ~14!

The first term on the right-hand side is ofO(1), which can
be proved by writingN(v,w) as a power series.

To calculate the velocitycj5r j ,t of a given spotū j , it is
necessary to eliminate the left-hand side of Eq.~14!. For this
purpose the equation is projected on the vectors

pj5S 2
1

d
v̄ j ,x ,w̄j ,xD and qj5S 2

1

d
v̄ j ,y ,w̄j ,yD , ~15!

which are, to order«, zero eigenvectors of the operato

@2L2¹N(( i ūi)#†, whereH† denotes the adjoint of a give
operatorH. Projection onpj leads to an equation for th
velocity xj ,t of spot j in direction of thex axis. For the
evaluation of the resulting equation it is useful to restrict t
domain of integration to the diskur 2r j u,

1
2 mini(uri2r ju),

thus neglecting some terms ofO(A«). Returning to the origi-
nal time scalet, this procedure leads to the result

^pj uū j ,x&sxj ,t52 (
i ,iÞ j

^pj u¹N~ ū j !ūi&s1O~«3/2!,

~16!

where ^ . . . &s denotes the integration over the disk-shap
region. Projecting onqj instead ofpj yields the velocity in
direction of they-axis.

Equation~16! provides a simple way to predict the mov
ment of the spotj in the presence of the other quasiparticle
Thus, the reaction-diffusion system has been reduced
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57 6483INTERACTION OF SELF-ORGANIZED . . .
system of 2N ordinary differential equations, whereN is the
number of spots in the system. Since the velocity of a spj
depends only on its distance to the other spots in the sys
the interaction of three or more of them can be construc
by a simple vector superposition, if their mutual interacti
is known.

To obtain the interaction law for two spots, Eq.~16! can
be written in simpler terms by means of the assumption,
both of them are located on thex axis at (x(1,2) ,y(1,2))5
(6d/2,0). In order to calculate the velocity of spot 1, th
domain of integration can be extended to the right half-pla
without losing accuracy. Afterwards it can be restricted
they axis by means of Green’s formula. Thus, the followi
equation for the speedẋ1 of the right spot as a function of th
distanced to its neighbor is valid up toO(«3/2):

ẋ1~d!5C~d!

5
1

pE
0

`

~dw̄1,r
2 1 v̄1,r

2 !rdr
E

2`

`

@Dv~ v̄1,xv̄2,x2 v̄1,xxv̄2!

2Dw~w̄1,xw̄2,x2w̄1,xxw̄2!#dyux50 . ~17!

To evaluate Eq.~17! for arbitrary distancesd, only the
shape of a single spotū5( v̄,w̄) is needed. This shape can b
computed with a very low numerical effort since we a
studying objects with rotational symmetry and Eqs.~1! can
be reduced to a spatially one-dimensional system.

After the functionẋ1(d)5C(d) has been calculated, th
dynamics ofN spots can be reduced to a system of equati
of the form

ṙ i5(
j 51
j Þ i

N

C~ ur i2r j u!
r i2r j

ur i2r j u
1O~«3/2!, i 51, . . . ,N.

~18!

For all situations with more than two spots it has to
checked carefully, whether the absolute value of the s
exceeds the error estimate. If it does not, no prediction
the movement can be made. This problem will be addres
later, when we discuss some numerical results concer
the interaction of three and more spots.

IV. NUMERICAL RESULTS

To confirm Eqs.~17!, ~18!, several numerical simulation
have been carried out.

The numerical effort for calculating the interaction la
from the approximation formula is negligible. On the oth
hand, the simulation of the full two-dimensional reactio
diffusion system needs considerable computational pow
Since the velocity of the spots decreases almost expo
tially with their distance dynamics almost vanishes as
distance grows. Furthermore the influence of the bounda
of the two-dimensional system on the spots must be ta
into account. In these calculations Neumann boundary c
ditions of the formn(x,y)•¹u(x,y)50 with (x,y)PG have
been used, wheren(x,y) denotes the normal vector of th
boundaryG of the system. For a rectangular domain, t
m,
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influence of the boundaries can be interpreted in a sim
way: They act as mirrors for the distributionu5(v,w). To
include this effect the interaction of the spots with their ‘‘r
flections’’ at the boundaries of the system has to be ta
care of. In order to calculate the interaction between t
spots, one spot can be placed near a boundary. Thus the
of the rectangular domain can be reduced by a factor of 2
no spot is closer than32 dmax to the domain boundary, assum
ing thatdmax equals the largest distance between two int
acting spots, the influences of the boundary are smaller t
the error estimate and can be neglected.

The exact form of the interaction depends directly on
shape of the stationary spotsū(r)5„v̄(r),w̄(r)…. For large
values ofr these distributions only depend on the lineariz
tion of Eq. ~8!. This linear equation has two basic types
solutions: one that decays monotonously and another
that decays and oscillates in space with some wavelengtk.
The first type leads to repulsion in the relevant situatio
while the second type exhibits domains of attraction and
pulsion, depending on the distance between the spots.

A. Numerical results for two quasiparticles

The first results pertain to the interaction of two spots. F
the numerical simulations the above mentioned set of par
eters~6! has been used. In this case simple repulsion is
pected. As an initial condition two spots were located
y1,250 andx1,256d/2, respectively.

In Fig. 3 the results of the numerical simulations are pl
ted together with the approximation derived from Eq.~17!.
For distancesd,0.9 the velocities were obtained from
continous motion: The initial distance wasd50.65 and the
spots travelled rather fast. For larger distancesd.0.9, their
movement becomes very slow, because the velocity depe
exponentially on the distance. Thus it was necessary to
termine the speed for some discrete spacingsd. The com-
parison shows that the theoretical approximation is in rat
good agreement with the numerical results. Of course,
approximation is only capable of capturing effects that le
to a movement of the spots. For geometries withd,0.6 the
distinct spots lose their stability due to the strong overlap
the two distributions and a description in terms of a parti
model is not possible. For this particular case the numer

FIG. 3. Velocityc1 of spot 1 as a function of the distanced to
spot 2 for the parametersDv50.0025,Dw50.025, k520.32, l
52, andd51. The interaction is repulsive and decays expon
tially with increasing distanced.
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results indicated that both spots disappear. If there are a l
number of spots in a finite system, the mutual repulsion w
lead to the formation of hexagonal patterns.

The case of oscillatory interaction was investigated for
parametersDv50.0035,Dw50.025,k520.16, l51, and
d51. Using the same geometry as in the previous case
have obtained the results summarized in Fig. 4. The ac
dance between simulation and approximation is rather go
The most important feature of the system for this set of
rameters is the existence of some discrete distances
which two spots are bounded in a stationary, stable state.
the given parameters these distances aredi

5(0.95,1.86,2.77, . . . ). This is due to the shape of the spo
which are surrounded by rings of alternating high and l
activator concentrations. A detailed analysis of Eq.~17! re-
veals, that stationary, stable configurations correspond to
situation when the neighboring spots are located exactly
the rings with high activator concentration.

There is a difficulty that can arise in the case of oscil
tory interaction. If the amplitude of the oscillatory rings
rather high, a superposition of two rings can lead to the
nition of new spots. This is due to the vicinity of the param
eters to the Turing bifurcation. Of course, such an ignition
spots is not covered by Eq.~12!.

B. Interaction of three or more quasiparticles

If there are more than two spots present in the system
has to be checked, to what extent the two-particle appr
mation holds. The problem is that the size of« is determined
by the minimal distance between two spots. Since the
known addend«s(r ,t) in Eq. ~12! scales with«, its effect on
more distant spots could become dominant.

In Fig. 5 some possible combinations of three or mo
spots for the case of oscillatory interaction are sketched.
parameters are the same as in Fig. 4 and the smallest dis

FIG. 4. Velocity of spot 1 as a function of the distanced to spot
2 for the parametersDv50.0035, Dw50.025, k520.16, l51,
andd51. ~a! refers tod,1.25 and~b! to d.1.25. In this region of
parameter space several discrete, stable distancesdi

5(0.95,1.86,2.77, . . . ) between two quasiparticles are possible.
ge
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is equal tod150.95 which is the first stationary, stable di
tance for two spots.

The configuration in Fig. 5~a! is stable, because the dis
tances between all three particles are the same, and the
of « is uniquely determined.

FIG. 6. Dynamics of the angular configuration of three sp
from Fig. 4~c! as function of the angleb. The results as estimate
by the theoretical approximation are compared with the numer
results for the parametersDv50.0035,Dw50.025, k520.16, l
51, andd51. ~a! For small values ofb the approximation is rathe
good.~b! For largeb the results are qualitatively correct but suff
from the neglect of higher-order contributions.

FIG. 5. Some stationary geometries for three or four spots
the parametersDv50.0035,Dw50.025, k520.16, l51, andd
51. The distance between two neighboring spots isd150.95. So-
lutions ~a!, ~c!, ~d!, ~e! and ~f! are stable; only configuration~b! is
unstable. The stability of the other solutions was proved by me
of the analytical approximation or by numerical methods.



h
th
th

es
u

a

ut

to

ke
u
h
d

v
i-

ar
a

.
ith

be
g

ib
r

.

ar
an

p
in
he
fila

n

a

in

at-
ave
ave

ults
tric

en
ts in

in

-
al-
tion
re-
of

e it
nts
de-

at
aft

I.

of

ous

57 6485INTERACTION OF SELF-ORGANIZED . . .
In Fig. 5~b! a linear chain of three spots is sketched. T
approximation fails in this case, because the effect of
outer spots onto each other is weaker than the effect of
unknown addends(r ,t) from approach~12!. The spot in the
middle shields the mutual interaction of the outer particl
Due to the symmetry this configuration will be stationary b
simulations showed that it is unstable.

Since the second stable distanced251.86 is smaller than
2d151.90 it is likely that there exists an angular configur
tion corresponding to that in Fig. 5~c!. There exists a strong
and therefore fast interaction between the inner and o
spots. This leads to a fixed distance ofd150.95. The influ-
ence of the two outer spots onto each other should lead
distance of aboutd251.86, corresponding to an angleb of
about 160°. The numerical proof of this assumption ta
quiet a lot of computational time, since one has to make s
that the interaction between the inner and outer particles
completely vanished. After this process has ended the
namics can be reduced to that of the angleb spanned by the
three spots as depicted in Fig. 5~c!.

The results of the numerics that comprise all three pre
ous cases, Fig. 5~a!–5~c! are shown in Fig. 6. The approx
mation is valid only for small anglesb, but does give a
qualitatively correct picture of the dynamics: The line
chain of spots is dynamically unstable and there exists
angular configuration of three spots with an angleb of 125°.
From the approximation an angle ofb5160° was estimated

In Figs. 5~d!–5~f! there are some possible geometries w
four quasiparticles: The stability for picture~d! can be con-
cluded from the stability of the angular configuration~c!.
The stability of the two other configurations can only
guessed. However, numerical simulations show that both
ometries are dynamically stable. Figure 7 shows the distr
tion of v(x,y) resulting from the numerical simulation fo
the geometry of Fig. 5~f!. The contour linesv(x,y)5v f em-
phasize the oscillatory behavior of the exponential decay

V. CONCLUSIONS

For parameter regions in which stationary spots
present, it was possible to determine their interaction
thus to calculate the resulting, stationary states.

A large variety of geometries can be constructed. Es
cially for parameters that allow oscillatory interaction
space, a lot of stationary, stable states can be found. T
structures exhibit a strong resemblence to clusters of
ments in an dc gas-discharge system@24#. This system can
be described by a set of two reaction-diffusion equatio
which are similar to the model equations~1!. Clusters of two
bounded filaments and the configurations of Figs. 5~c! and
5~f! have been observed experimentally.

The same mathematical approach can be used for m
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types of localized patterns that can be constructed
reaction-diffusion systems. Elphick and co-workers@25,26#
derived the asymptotics of an interaction law for propag
ing, localized pulses in a one-dimensional system. W
trains of pulses and repulsion between these objects h
been predicted theoretically. Experimentally these res
have been verified using a chain of coupled nonlinear elec
circuits @27#. Wave trains of up to four pulses have be
observed. Other structures that could be used are spo
one-dimensional systems or stripes and moving stripes
two spatial dimensions.

Recent theoretical results@28# obtained for a set of three
component reaction-diffusion equations suggest that it is
ways possible to find parameters that lead to the propaga
of any stationary structure that can be found in the cor
sponding two-component system. This leads to a variety
complex moving patterns, which is of special interest sinc
was possible to observe slowly moving clusters of filame
in an ac-driven gas-discharge experiment similar to that
scribed in@19#.
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FIG. 7. Result of a numerical simulation for the geometry
Fig. 6~f!. The gray-scale corresponds to values from20.65 to 0.75

of v̄(x,y). The lines are given bev̄(x,y)5v f . They show that the
solution decays in an oscillatory manner towards the homogen
state.
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